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Predictability and forecast skill are complex 
functions of scale, process and model 
configuration. In particular, it is not clear 
what the basic skill in forecasting monsoon 
rainfall at high-resolution and long-range is. 
At the same time, only forecasts with high 
spatial resolution can meet the user needs, 
it is important to explore and quantify the 
skill at such forecasts objectively. As a part 
of its sustained effort to develop capability 
for long-range, high-resolution dynamical 
forecast of monsoon rainfall, and to build up 
statistics of skill for such forecasts, C-
MMACS has been generating experimental 
forecasts since 2003. These experimental 
forecasts are thus generated for the sole 
purpose of objective, transparent post-
forecast evaluation of forecast skill. The 
forecast model is a variable-resolution GCM 
adopted from a version developed at 
Laboratory for Dynamic Meteorology (LMD), 
France. A special feature of the model is 
that it allows selectively high  
 

 
 
 
 

resolution (zoom) over a given area (such as  
the Indian summer Monsoon region), thus 
allowing high-resolution simulation of 
monsoon at a relatively affordable 
computational cost. For improved forecast 
skill, however, the model must also be 
supplemented with appropriate forecast 
methodology. C-MMACS uses a Multi-grid 
Ensemble (MuGE) methodology, specially 
developed for long-range monsoon 
forecasting. 
 
As forecast of actual rainfall is difficult due to 
still unavoidable model bias, forecasts are 
often made for anomalies, which are the 
departures from the corresponding long-
period mean. Thus while the observed 
anomalies are derived with respect to 
observed climatology, the forecast anomalies 
are computed with respect to the model 
climatology. The C-MMACS (anomaly) 
forecasts are based on a 25-year model 
climatology. With this philosophy, 
experimental long-range, high-resolution 
forecast of monsoon rainfall was generated 
for 2006. 
 
 

 
 
 

1.1 Experimental Long-range, High-
Resolution Forecast of Monsoon Rainfall: 
Post-Forecast Evaluation 

Figure 1.1 Area-averaged (75-77E; 8-12N) daily rainfall from nine-member ensemble forecasts for the period 
May 15 to June 15, 2006. The encircled days (May 25 to May 28) mark the first episode of large-scale, sustained 
and significant rain over the coast of Kerala and the onset of monsoon 2006 according to our definition. The 
correlation coefficient between observed and simulated daily rainfall is 0.3. 
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As mentioned above, one basic objective of 
C-MMACS experimental forecasts is to 
explore achievable skill at different scales 
with improved forecast configuration. We 
have therefore explored the model’s skill in 
capturing the onset of monsoon rainfall. It is 
obvious that a unique definition of onset 
does not (and cannot) exist, as the definition 
depends on the emphasis. With our focus on 
rainfall and the users, we have defined the 
onset of monsoon as the day in May/June 
period on which rainfall occurs with the 
following characteristics: 
 
(a) Large-scale: should occur more or less 
simultaneously over a number of stations. 
(b) Significant: should be above a threshold 
value, typically 3 mm/day. 
(c) Persistent: should last a few days with 
characteristics intermittently (day-to-day-
variation). 
(d) Sustained: The first spell should be 
followed by another rainfall spell with a gap 
of no more than 10 days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While the criteria (a)-(c) have been 
advocated by others, the criteria (d) is our 
addition; its implementation requires 
forecasts for days subsequent to onset. 
 
With this definition, the onset date for 2006 is 
predicted as May 26, based on an ensemble 
of 9 simulations based on initial conditions 
during the period 09 February to 25 March, 
2006. 
 
The forecasts of monthly anomalies are 
made by first calculating anomalies with 
respect to 25-year model mean for each 
member of the ensemble. The ensemble 
average is then determined as average over 
the ensemble with equal weight. The monthly 
rainfall anomaly, normalized to the 25-year 
climatology, for the month of June is 
presented in Figure 1.2 below (left panel), 
where the anomalies are expressed as 
percentage of model mean, it also compares 
the monthly rainfall anomaly for June from C-
MMACS forecast with the IMD observation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2  Comparison of C-MMACS forecast for June rainfall anomaly with the corresponding observation 
(www.imd.ernet.in), the areas with less than 10% deficit rainfall in observation have been shaded with red colour 
in the right panel for ease of comparison. 
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For a comparison of our forecasts with 
observation, we reproduce below the 
highlights of our forecasts that were 
communicated to the India Meteorological 
Department (IMD): 
 
1. Marginally deficit (about 5% below 

model mean) rainfall for continental India 
as a whole in June, July and August 
2006. These deficits are likely to be 
much higher for central and northern 
India. 

 
2. Strongly contrasting distribution of 

rainfall anomalies between southern and 

the northern India as a whole. While 
most parts of southern India and the east 
coast are likely to receive excess rainfall 
in June, most parts of central India is 
likely to suffer from severe deficit. 

 
3. Flood-like situation is likely to prevail in 

Bihar, Jharkhand and West Bengal in 
July-August, 2006. 

 
Figure 1.3 compares the spatial structures of 
rainfall forecasts for two weeks with the 
corresponding observations. Quite 
predictably, the errors at weekly scale are 
higher.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3  Comparison of C-MMACS forecast for two weeks of July ( 1st week & 3 r d week) rainfall anomalies with 
the corresponding observation (www.imd.ernet.in), the areas with less than 10% deficit rainfall in observation 
have been shaded with red colour in the right panel for ease of comparison. 
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Figure 1.4 Comparison of C-MMACS forecast for seasonal (June-Sept) rainfall anomaly with the corresponding 
observation (www.imd.ernet.in), the areas with less than 10% deficit rainfall in observation have been shaded 
with red colour in the right p anel for ease of comparison. 

 
A comparison of forecast and observed 
rainfall for June shows that the forecasts 
captured many of the observed features. 
However, although Bihar and Jharkhand 
recorded normal rainfall compared to deficit 
rainfall in the neighboring areas, the forecast 
of flood was wrong. The forecasts did 
capture, however, the severe drought in the 
north-east and strong contrast in rainfall in 
between northern and southern India. 
 
The structure of seasonal (June-September) 
rainfall from the forecasts is compared with 
the observed structure in figure 1.4. Once 
again, this comparison is in the sense of 
category, so that areas below 10% deficit in 
observation have been assigned a single 
color (red). A summary of comparison is as 
follows: 
 

(a) The main error in the forecast is the 
large deficit predicted for the north-
western sector and Jammu and 
Kashmir. 

 

(b) The forecasts also over predicted the 
deficit along the eastern coast. 

(c) The forecasts correctly predicted the 
severe drought over the north-east 

 
(d) The forecasts could capture the 

excess rainfall over Orissa adjoining 
areas with severe deficit 

 
(e) The forecasts captured the deficit 

over the northern belt and eastern 
India 

 
(f) The forecasts captured the normal to 

excess rainfall over south-western 
coast adjoining the deficit area over 
the east coast. 

 
Given that forecast skill is a complex function 
of a number of parameters and processes, 
there is an urgent need to explore attainable 
skill at different scales; the C-MMACS 
experimental forecasts are a step in this 
direction. 
 

K C Gouda and P Goswami 
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The onset of the Indian summer monsoon 
(ISM) over Kerala marks the beginning of 
the main rainy season for India. The onset, 
however, needs to be carefully 
distinguished from the synoptic processes 
that mimic it. The onset of monsoon is a 
result of a large-scale shift in the regional 
circulation pattern. In contrast, the so called 
“false” or “bogus” monsoon onsets are 
associated with propagating tropical 
intraseasonal disturbances unrelated to the 
monsoon onset. These disturbances are 
characterized by an enhancement of 
convection and westerly surface winds 
similar to the monsoon onset but occurring 
over a smaller scale and lasting a week or 
less. The false onsets are often followed by 
extended periods of heat waves and 
droughts. An incorrect identification of a 
bogus onset with the date of onset of 
Monsoon (DOM) can cause considerable 
economic and agricultural damage, as 
crops planted in anticipation of the 
monsoon are likely to fail. The  bogus 
onsets can predate the actual onset by up 
to a several weeks; thus one of the biggest 
challenges in identifying, and predicting, 
date of onset of monsoon is, to avoid these 
‘bogus’ onsets. 
 
Although the onset manifests itself in 
various dynamical and thermodynamical 
variables, these can be expected to be 
closely interrelated and mutually consistent. 
One index of the large-scale transition in the 
regional circulation associated with the 
onset of monsoon is the characteristic 
change in the rainfall over Kerala. While 
there exists no unique definition, at the 
surface the onset is recognized as a rapid, 
substantial, and sustained increase in 
rainfall over a large scale; typically, from 
below 5 to over 15 mm day-1 during onset. 
We have therefore considered only one 
variable, daily rainfall, to examine its 
potential to identify DOM as announced by 
India Meteorological Department (IMD). A 

feature that characterizes the onset is 
spatial coherency over a large scale, which 
is uncharacteristic of synoptic variability. 
Traditionally, the official announcement of 
DOM by the India Meteorological 
Department (IMD) is based on station 
observations of a number of meteorological 
variables. Given the tremendous spatio-
temporal variability of monsoon rainfall, the 
effectiveness of isolated station 
observations in capturing the essential 
characteristics of the onset process is 
questionable.  
  
We have quantified and calibrate the large-
scale nature of monsoon rainfall in terms of 
spatial coverage. As shown below, these 
criteria encompass the conventional criteria 
for DOM based on rainfall, but have 
extended scope to avoid bogus onset. 
Further, these criteria are equally applicable 
to observed gridded data and model 
outputs.  
 
Leaving the methodology for obtaining post 
onset rainfall for a future work, our aim in 
this work is to formulate and assess such a 
criterion for determining DOM. The objective 
criteria adopted by us are thus based on 
four parameters: pre-onset persistence 
(PrOP), significance, spatial coverage and 
post-onset persistence (PoOP). The PrOP 
and PoOP together ensure that the rainfall 
observed or predicted is sustained, and not 
a result of a transitory system. The 
significance is taken in terms of rainfall 
above a threshold value, 3 mm/day.  
 
The spatial coverage, above a threshold 
value, ensures the large-scale, spatially 
coherent nature of the monsoon rainfall. 
However, as the traditional announcements 
of DOM are based on station observations 
(in Kerala), an appropriate equivalent value 
for the spatial coverage has to be 
determined from observed spatial 
distribution of rainfall. The primary 
requirement for such an analysis, a high-
resolution gridded rainfall dataset, was only 
recently met with the availability of a 53- 
year (1951-2003) daily rainfall data on a 1o x 

1.2 Onset of Monsoon based on 
Spatial Coverage 
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?1o grid prepared by the India Meteorological 
Department (IMD).  
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Figure 1.5 53-year (1951-2003) average absolute 
error in computed DOM for different area 
coverage. The green, blue and red bars represent, 
respectively, computed dates based on criteria of 
0 (no post-onset persistence), 3 and 5 day post-
onset persistence of (threshold) rainfall above 3 
mm/day. The Pre-onset persistence is 3 days. 
 
Figure 1.5 calibrates and quantifies the role 
of spatial coverage in terms of average 
error in computed DOM for different area 
coverage (%) beginning 10% and going up 
to 50 %. An important feature in figure 1.5 is 
the steep increase in error for coverage (%) 
beginning 20% of the onset domain. It was 
found that for area coverage more than 
50% a DOM within the May-June period 
could not be identified for most of the years. 
The large scale nature of monsoon is thus 
best reflected in an area coverage of 20% 
of the onset domain. It was found that for 
area coverage more than 50% a DOM 
within the May-June period could not be 
identified for most of the years. 
. 
We next evaluate the skill of the 
methodology in terms of histogram of 
errors between the predicted dates of onset 
and the dates of onset computed from the 
daily gridded rainfall data of IMD following 
our objective criteria. The hollow, shaded 
and filled bars in figure 1.6 represent the 
(% of) cases in different error bins for 
PoOP of 0, 3 and 5 days, respectively. As 

can be seen from figure 1.6, both for PoOP 
of 0 and 3 days, 83% of the cases have 
error less than one standard deviation, 
while for PoOP of 5 days this number is 
72%. The average error between the 
announced and  computed DOM are 4.3 
days, 3.8 days and 4.8 days, respectively, 
for PoOP of 0, 3 and 5 days, as given in the 
panel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6 Histogram of errors in computed and 
announced dates of onset with respect to dates 
of onset computed from daily rainfall data from 
the India Meteorological department.  Both the 
computed and the predicted dates are based on 
the criteria of significant rainfall with Pre-onset 
persistence of 3 days and threshold of 3 mm/day. 
The hollow, solid and shaded bars represent, 
respectively, Post-onset persistence of 0 (no 
post-onset persistence), 3 and 5 days. (a) for  the 
area coverage of 20% over the onset domain (b) 
for the area coverage of 30% over the onset 
domain. 
 
It may appear, based on the analysis so far 
that inclusion of a PoOP doesn’t significantly 
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improve identification of DOM. As 
mentioned earlier, however, the biggest 
challenge in identification of DOM is to 
avoid false onsets. We have therefore 
compared (Table 1.1) the success of the 
methodology for seven years that were 
characterized by false onsets [Flatau et al., 
2001] within the period 1951-2003. As can 
be seen from Table 1.1, the introduction of 
a PoOP of 3 days considerably reduces 
error in identification of DOM, the average 
error for the seven years is only 3.1 days for 
PoOP of 3 days, as against 7.5 days for no 
PoOP. Further, with PoOP of 3 days there 
is only one case of large error (10 days for 
1986) as against two large errors (33 days 
and 10 days for 1972 and 1976, 
respectively) for no PoOP.  
 
As mentioned earlier the biggest challenge 
in identification of DOM is to avoid false 
onsets. We have therefore compared 
(Table 1.1) the success of the methodology 
for seven years that were characterized by 
false onsets within the period 1951-2003. 
As can be seen from Table 1.1.  
 

 
Table 1.1 Error in computation of DOM for seven 
years of false onset with different PoOP and 
Coverage 
 
 
It is, of course, neither meaningful nor 
necessary to insist on a fixed set of criteria 
to define DOM beyond ensuring its 
monsoonal characteristics. The traditional 
definition of the onset of ISM, whether 

based on rainfall, dynamical fields or 
hydrological considerations, uses a single 
set of criteria. However, once these criteria 
ensure large-scale and sustained nature 
(that is monsoonal) rainfall, the parameters 
defining significance and persistence can 
be process-specific. In practice, it is 
necessary to consider onset dates based 
on multiple sets of criteria, as agro-
hydrological requirements are likely to be 
different for different users (such as crop 
type and catchment’s area). Our 
methodology allows determination of DOM 
based on such multiple-criteria, as the 
parameter of emphasis can change from 
user to user.  
 
Our method thus allows accounting for such 
parameters like spatial coverage 
(characteristic of ISM) not possible with 
isolated station data. Further, gridded data 
allows a uniform procedure for computing 
DOM from observations model simulations 
and other spatial data. While gridded data 
from IMD observations may not be available 
on time to be used in determining DOM, 
remotely sensed data with sufficient spatial  
coverage provides an exciting possibility.  
Although model forecasts in principle can 
be downscaled to station scale, the errors 
involved are often unacceptable. The use of 
% coverage largely eliminates errors that 
may arise from using fixed locations. 
 

 K C Gouda and P Goswami 
 
 

 
 
 
The most commonly used current strategy 
for mesoscale simulation and forecasting is 
Limited Area Models (LAM), three 
dimensional models with artificial lateral 
boundary conditions. The methodology 
adopted in most places in applying these 
meso-scale models, however, has a serious 
shortcoming; removable of this weakness is 
expected to result in better skill, as 
demonstrated in this work.   

Coverage   
10% 20% 30% 

1967 3 0 24 
1968 0 0 2 
1972 33 33 35 
1979 0 1 3 
1986 6 10 11 
1995 5 5 6 
1997 4 4 16 
Avg 7.2 7.5 13.8 

1.3 Optimum Domain Size for Mesoscale   
Processes Simulation 
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Figure 1.7  Longitudinal and Latitudinal extents and geographical coverage of experimental model domains  
 
While these models can support high 
horizontal resolution necessary to resolve 
surface inhomogenities and convective 
dynamics at scales not yet feasible in 
General Circulation Models (GCM), a 
necessary price is the artificial lateral 
boundaries. The limited domain introduces 
several aspects to a mesoscale simulation. In 
particular, there is no unique choice of the 
extent and geographical coverage of the 
domain. Besides, the large-scale forcing at 
the lateral boundaries may not always be 
dynamically consistent with the inner 
(mesoscale) fields. The question of the 
lateral boundary or the domain size is 
inherently related to model dynamics and 
physics. While resolution determines the 
smallest resolved scale, the domain size 
restricts the largest (horizontal) scale 
resolved. Thus, domain size and resolution 
together determine the spectrum of resolved 
scale and nature of scale interaction in the 

model dynamics. The geographical coverage 
(necessarily covering the event location) of 
the mesoscale simulation domain also plays 
a significant role by selectively including or 
excluding processes like orographic lifting 
and equatorial waves.  
 
We have carried out a detailed investigation 
of the effect of size and coverage of the 
domain on the quality of simulation of a 
mesoscale event. The mesoscale model 
MM5 was used to investigate the extreme 
rainfall event that occurred over Mumbai over 
the west coast of India during 26-27 July, 
2005. For each of the five chosen domains 
(Figure 1.7) with different spatial extent and 
geographical coverage, simulations were 
carried out with five initial conditions (leads) 
for a given resolution with identical physics 
options.  These simulations were   repeated 
for different resolutions (90, 60  and  30km),  
resulting  in  a  total  of   75  

Domain 2 
Domain 3 

Domain 4 

Domain 5 

Domain 6 

Domain 1 

Domain 7 
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Figure 1.8 Spatial distribution of 30 hour 
accumulated ensemble mean rainfall for different 
domains of 30 km resolution. 
 

simulation experiments. In addition, two 
larger (one nearly global) domains were 
considered for coarser resolution (90-60km). 
Our results show that along with resolution, 
the geographical coverage and the size of 
the domain also play critical roles in the 
simulation of a mesoscale event. In terms of 
(30 hour accumulated) maximum rainfall 
realized, the domains D1 and D5 resulted in 
comparable (maximum) values, although the 
size (area) of domain D5 is much smaller 
than that of domain D1. Comparative 
analysis of the results of domain D4 and D5 
which are of comparable size is of particular 
interest. They show significant differences in 
terms of maximum rain, more so in the case 
of higher resolution (30 km) compared to 90 
and 60 km. The best simulation is found to 
be for domains that are not the largest but 
that cover significant part of the equatorial 
ocean, i.e. domain D5. Lat-Lon distribution of 
30 Hr accumulated rainfall for different 
domains of 30 km resolution is shown in 
Figure 1.8. Highly localized mesoscale 
structure may be seen around Mumbai.  One 
possible dynamical mechanism responsible 
for the influence of domain size can be drawn 
from a qualitative application of the result 
(Green’s theorem) that a dynamical boundary 
value problem with inhomogeneous lateral 
boundary conditions is equivalent to a 
system with homogeneous lateral boundary 
conditions with an additional forcing. The 
inhomogenity in the lateral boundary 
conditions is thus a measure of variation in 
large scale forcing with   the   size   and   the   
coverage   of   the  
domains. While this conclusion is likely to 
change based on event location, our study 
shows that the choice of the meso-scale 
domain is a non-trivial but critical input for 
improved mesoscale simulation and 
forecasting, and needs to be determined 
through a comprehensive calibration 
experiment. 
 

P Goswami and S Himesh 
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Extreme rainfall events today pose a serious 
threat to many populated and urbanized 
areas worldwide; an accurate estimate of 
frequency and distribution of these events 
can significantly aid policy planning and 
observation system design. We report here a 
first-ever high-resolution (10 KM) analysis of 
heavy rainfall episodes (defined as 24-hour 
rainfall exceeding 250 mm) over the Indian 
region. The data set, recently developed by 
National Oceanographic and Atmospheric 
Administration, USA (NOAA), provides daily 
composite rainfalls for the period 2001-2006 
at locations approximately 10-km apart. To 
assess the usefulness of the dataset for such 
application over India, we have compared 
area-averaged daily rainfall over Kerala (EN) 
from IMD gridded daily rainfall data and the 
high-resolution data; Figure 1.9 shows the 
comparison for these 3 years 2001-03 for 
which the two data sets overlap. The close 
resemblance, supported by high-correlation 
coefficients in spite of inherent uncertainties 
in creation of gridded data, shows the 
potential of such an approach. A category-
wise analysis identify a number hot spots of 
vulnerability in terms of annual average 
number of extreme rainfall events; in 
particular, the semiarid region in the north-
west India emerges a high vulnerability area 
in terms of extreme rainfall events (Figure 
1.9). These findings have important 
implications for a number of areas like 
vulnerability assessment and meso-scale 
forecasting.  
 
The high-resolution analysis also clearly 
reveals the corridor of the monsoon trough 
(Continental Tropical Convergence Zone), 
lined by flower-pot distribution of extreme 
rainfall events along the flanks (Figure 1.9). 
The analysis owing to its very high resolution 
can be also used for precision design of field 
experiments on the continental trough or on 
localized extreme events like thunderstorms 
by optimizing most probable event location 
and logical constraints.  
 

Figure 1.9  Spatial distribution of ERE of different 
categories accumulated over five years (2001-
2005). The high density of ERE over the west coast 
and along the flanks of the monsoon trough is 
prominent. 
 
Although the NOAA data set used here 
allows us much more precise and accurate 
assessment of spatial and temporal 
distribution of ERE and thus associated 
degree of vulnerability, a more 
comprehensive analysis requires collocated 
measurements of other dynamical, surface 
and sub-surface parameters. Based on the 
precision distribution of the ERE revealed by 
our analysis, such measurements can be 
made by placing Automated Weather 
Stations (meteorological towers) over these 
locations. Such measurements, 
supplemented by other observation platforms 
like remote sensing and upper-air soundings 
can allow analysis and forecasting of these 
high-impact events at precision and 
resolution that can be effective in 
applications like pro-active disaster 
management.  
 

K V  Ramesh and P Goswami  
 
 
 

1.4  Extreme Rainfall Events: Vulnerability 
Analysis for Disaster Management  
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Comparison of composite events of Tropical 
Intraseasonal Oscillations (TISOs) [(i) 
eastward propagating Madden-Julian 
oscillation (MJO) during Boreal winter and (ii) 
northward propagating intraseasonal 
oscillation (NPISO) during Boreal summer] 
constructed based on objective criteria, 
shows that the three dimensional structure, 
amplitude and speed of propagation, and the 
phase relationship among surface fluxes, sea 
surface temperature (SST) and convection,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
are markedly improved in a coupled GCM 
(CGCM) simulation compared to its stand 
alone atmospheric GCM (AGCM) forced with 
CGCM SSTs. Consistent with the frictional 
wave-CISK (Conditional Instability of the 
Second Kind) mechanism, successive 
development of low-level  convergence to the 
east (north) of deep convection was found to 
be important for eastward (northward) 
propagation of MJO (NPISO). For example, 
Figure 1.10 shows that in contrast to AGCM 
simulation, the composite NPISO event 
evolves as a strong coupled mode in CGCM 
as in observation. The simulated NPISOs in 
its atmosphere-alone component lack many 

of the important features not only associated 
with their amplitude, phase and life-cycle but 
a coherent coupled feedback process as 
well.  
 
The phase relationship between rainfall (PR) 
and SST, wind stress (t), fluxes of SH, LH, 
SWNet ,  QNet , LWNet, moisture divergence 
(M) and divergence (D) at 200 hPa and 925 
hPa at the reference point 15N; 90E during a 
TISO composite is shown in Figure 1.11. Net 
fluxes (SH, LH) are positive into (out of) the 
ocean. Symbols ’+’ indicate maxima and ’-’ 
indicate minima of the correlations. In 
CGCM, coherent coupled convective-
thermodynamic feedback is evident from the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
strong correlations and their temporal 
evolution in the coupled model through the 
full half cycle. In contrast, the AGCM shows 
weak and insignificant lag correlations during 
the SST half cycle. Due to the absence of 
direct interaction of convection and surface 
fluxes in modulating SST, there is a complete 
breakdown of the coherent evolution of the 
phase relationships except for warm SST 
boundary anomalies directly modifying the 
large-scale dynamical fields and causing the 
precipitation. This conveys that a realistic 
representation of the interaction between sea 
surface and the atmospheric boundary layer 
is crucial for the simulation of TISOs. 

1.5 Modulation of Tropical Intra-
seasonal Oscillations by Coupling: CGCM 
vs. AGCM Study  

Figure. 1.10 Latitude vs. lag diagram of composite anomalies of rainfall (shaded), SST (black contours) and 
925 hPa divergence (X106) (white contours at 0.4 interval) at 90E. Number of events are 38, 29 and 19 for 
observation, CGCM and AGCM respectively. 
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Figure 1.11 The temporal relationships for the (a) 
CGCM and (b) AGCM simulations are shown 
against the corresponding observation in the 
background. The filled circle indicate the lags at 
which the correlation maxima (minima) which are 
above (below) the 95% significance level occur for 
each variable from observation and the shades 
indicate the corresponding lag range of 95% levels 
. The box (diamond) indicates the lags at which the 
correlation are significant (insignificant) at 95% 
level for the simulations and the solid bars indicate 
their corresponding lag range for 95% levels. 
      

   K. Rajendran and A. Kitoh 
 

 
Large-scale seasonal circulation during June-
October over western North Pacific shows 
two dominant modes;  the El Nino Southern 
Oscillation (ENSO) mode and a mode 
correlated with the variation of the subtropical 
high (STH). The second mode of CEOF 
(Combined EOF) analysis for vertically 
integrated lower tropospheric zonal and 

meridional winds (Ui, Vi), geopotential height 
at 850 hPa (Z850) from ERA-40 reanalysis 
and the temporal variation associated with 
this mode is shown in Figure 1.12. The 
horizontal fields of Ui, Vi and Z850 show that 
there are two centers of action, one is a low-
pressure anomaly centered near 20 °N, 135 
°E and the other is a high-pressure anomaly 
centered near 40 °N, 160 °E. In its positive 
phase, the equatorial westerly anomalies 
enhance along 10°N over the western North 
Pacific and the STH retreats eastward.  

 
FIG 1.12 The second mode of the CEOF for Ui, Vi 
and Z850 from ERA-40. Shaded contours denote 
positive values. TC+ (TC-) denotes years with more 
(less) number of tropical cyclone landfall. CG+  
(CG-) denotes years with more (less) number of 
tropical cyclone genesis. The open (solid) 
rectangles and circles denote TC+ (TC-) and CG+ 
(CG-) years. "L" in Z850 (bottom-left) represents the 
centre of the anomalous low pressure.  
 
 In contrast, during its negative phase, the 
equatorial easterly anomalies enhance over 
the region to strengthen the climatological 
easterlies and thus extending the STH 
westward. The extensive analysis of long-
period data revealed that in years when the 
STH extends westwards from its 
climatological position and the maximum of 
the high pressure anomaly is located along 
the Tropic of Cancer, the  frequency of 
Tropical Cyclone (TC) approach or landfall in 

1.6 Western North Pacific Circulation 
Modes and Tropical Cyclone Landfall in 
Japan 
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Japan tends to be reduced. It is partly due to 
less number of TC genesis (CG-) over the 
western North Pacific in these years. In 
contrary, when the STH retreats eastwards 
and the maximum of the low pressure 
aomaly is located along the Tropic of Cancer, 
there is a tendency to have more number of  
TCs approach or make landfall (TC+) in 
Japan. Based on these results, this mode is 
named as the tropical cyclone landfall (TCLF) 
mode. 
 

T. Nakazawa and K. Rajedran 
 

 
The simple ensemble mean (SEM) of  the 
AGCM forced with observed monthly mean 
SSTs starting from different initial conditions 
shows systematic bias in simulated 
climatological ISMR pattern and mean 
seasonal variation of rainfall over the Asia-
Pacic region. Concurrently, the monsoon 
interannual variability throughout the analysis 
period is not adequately represented. A bias-
correction method is applied to the member 
simulations to remove the systematic bias in 
the simulation of climatological features. This 
method derives correction coefcients for the 
members for each Julian day separately at 
every grid point through multiple linear 
regression of daily rainfall from the member 
simulations against corresponding 
observation over a long training period. 
Thereafter, at every grid point, for each 
Julian day of any forecast period, the bias 
removed ensemble mean (BREM) simulation 
is computed as an optimal linear combination 
of weighted member simulations. It is found 
that BREM improves upon SEM not only in 
simulating the mean ISMR pattern but also in 
capturing the interannual variability of ISMR 
during the entire analysis period. In addition, 
the effective removal of climatological bias in 
BREM also improves its subseasonal 
evolution (during 2002 monsoon season is 
shown in Figure 1.13) particularly associated  
 

Figure 1.13 5-day running mean applied daily 
rainfall averaged over (a) continental central India 
and (b) equatorial Indian Ocean from observation, 
members, SEM and BREM simulations. 
 
with the low-frequency intraseasonal 
variability. The analysis thereby underlines 
the importance of climatological seasonal 
variation of rainfall over the Asia-Pacic region 
not only for capturing interannual variation of 
ISMR and climatological ISMR pattern but 
also for improving its intraseasonal variability. 
 

S Sajani, T Nakazawa, A Kitoh and K Rajedran 
 

 
Low-frequency intraseasonal time scales 
in?uences  the   nature   of   onset,    intensity  
and   duration  of  active/break   phases   and  
 
 

1.7  Ensemble simulation of Indian Summer 
Monsoon Rainfall by an AGCM 

1.8   The role of low-frequency intra-
seasonal Oscillations in Anomalous Indian 
Monsoons 
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Figure 1.14 Time-latitude variation of 20-80 day filtered observed rainfall averaged over 75E-85E (shaded) and 
corresponding filtered anomalies of surface wind over the Arabian Sea (contours).  
 
withdrawal of the monsoon during anomalous 
Indian summer monsoon seasons. For 
example, during the most severe drought of 
2002, persistent warm sea surface 
temperature anomalies over the equatorial 
Indian Ocean played a signi?cant role in 
modulating the strength of the monsoon 
Hadley circulation. This in turn affected the 
onset and intense break spells especially the 
long break during the peak monsoon month 
of July. Further, SST anomalies over the 
equatorial Indo-Paci?c region on low-
frequency intraseasonal time scales were 
found to a? ect the equatorial eastward and 
thereby off-equatorial northward 
propagations (shown in Figure 1.14) of 
enhanced convection over the Indian region. 
These propagations in turn modulated the 
active/break cycle deciding the consequent 
severity of the 2002 drought.  
 

S  Sajani, S  Naseema Beegum, K Krishna Moorthy 
 
 

 
The main objectives in biogeochemical 
modelling studies are identification of key 
biogeochemical elements/compartments and 
processes, estimation of the model 
parameters  and  evaluation of the integrated  

 
system models through model-data 
comparison at different temporal scales. We 
examine the effect of five relations governing 
the uptake of nitrate and ammonium by 
phytoplankton on the state variables of a 
seven-component ecosystem model in the 1-
D physical framework given in the Arabian 
Sea Testbed. This marine ecosystem model 
is evaluated by using US JGOFS data and 
buoy data at S7 (15.5°N, 61.5°E) in Arabian 
Sea. The seasonal variations of depth 
integrated values of primary productivity and 
chlorophyll are compared with the buoy data 
during 1994-95. Observed column-integrated 
primary productivity (PP) and chlorophyll 
(Chl) (Figure 1.15) suggest two highly 
productive seasons, namely, December to 
March (North East Monsoon and boreal 
winter) and July to October (South West 
Monsoon).  Each season has two major and 
one minor bloom. The modeled PP and Chl 
show a similar tendency towards greater 
productivity in these seasons, but with more 
blooms of shorter duration.  
  
While this investigation did not clearly identify 
the most appropriate model of nitrogen 
kinetics, it showed that modeling of 
nitrification is essential in an ecosystem 
model. Two numerical simulations were 
carried out by introducing the nitrification 
process in the ecosystem model with YS 
relation for nitrogen kinetics, to test whether  
 

1.9  Mathematical Modelling of 
Biogeochemical Cycles in the Indian 
Ocean 
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Figure 1.15 a Seasonal variation of Depth 
Integrated Primary Productivity (mg C/m2/day) 
compared with Buoy Data Figure.b Seasonal 
variation of Depth Integrated Chlorophyll (mg 
Chl/m2) compared with Buoy Data 
 
incomplete modeling of remineralisation was 
responsible for some of the differences. 
Seasonal variation of Nitrate and Ammonium 
in upper ocean (Figure 1.16 and 1.17) shows 
that nitrification reduces the concentration of 
ammonium and increases nitrate throughout 
the water column in all seasons. 
 
Parameter sensitivity studies are done using 
a 3D coupled physical-biological-chemical 
model. The marine ecosystem model is 
evaluated by using US JGOFS data, BOBPS 
data, satellite data and buoy data for different 
values of a few of the parameters which 
influence the regeneration of ammonium and 

  

 
growth of zooplankton and hence the carbon 
flux across the air-sea interface. The basin-
wide variations of primary productivity (PP) in 
the euphotic zone and surface chlorophyll 
(Chl) obtained from simulations agree well 
with the SeaWiFS data except in regions of  
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Figure 1.18 Profiles of PP (mg C/m3/day) obtained 
from nine numerical simulations compared with US 
JGOFS cruise data during five times over a year at 
S7 (15.5°N, 61.5°E) in AS. 
 
freshwater input from rivers, for all seasons. 
The profiles of Chl, PP, Zooplankton (Z), 
Bacteria (B), Nitrate (Nn) obtained from nine 
numerical experiments are compared with 
the cruise data from US JGOFS at four 
stations in AS and with BOBPS data at two 
stations in BOB during different seasons. 
Figure 1.18 shows the comparison of PP 
obtained from nine model simulations with 
US JGOFS data at a stationin central AS. 
Minimum values of PP are obtained when 
some of the parameters are changed to 
reduce the regeneration of ammonium by 
zooplankton. Depth integrated values of Chl, 
PP, Z and Bacterial production are compared 
with the cruise data in Arabian Sea. It is 
noticed that maximum values of zooplankton 
biomass are obtained for the simulations 
when grazing rate is reduced or half-
saturation constant is increased. Nitrate 
concentrations obtained from the numerical 
simulations where regeneration of 

ammonium by zooplankton is reduced, are 
closer to observations. Spatial variation of 
new and regenerated production shows that 
regenerated production is higher than new 
production for all numerical experiments. 
 

P S Swathi, M K Sharada, K S Yajnik 
 and C Kalyani Devsena 

 

 
 
A global GCM was used to carry out climate 
sensitivity to aerosol characteristics making 
use of the large observational database of 
regional aerosols being generated under the 
Aerosol Climatology and Effects (ACE) 
project of ISRO-GBP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.19 Aerosol climate sensitivity in global 
(top) and regional (bottom) seasonal mean rainfall. 

1.10  Climate Impact of Regional Aerosols 
over India: An AGCM study. 
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Global Boreal summer mean precipitation 
shows large climate sensitivity to a blanket 
distribution of background aerosol optical 
depth (AOD) of 0.15 (referred to as 'BKG' in 
top panel of Figure 1.19). Introduction of 
realistic AOD values from ACE network 
observations over India (referred to as 'ACE') 
shows that large quantitative and to some 
extent qualitative  differences in simulated 
regional climate depending on the changes in 
aerosol representation in the model 
(e.g.,climatological summer rainfall difference 
between ACE and no-aerosol run of the 
model in bottom panel of Figure1.19). This 
indicates the improtance of  incorporation of 
realistic AOD values to assess the simulated 
climate and climate projections using GCMs. 
 

S Sajani, K Rajedran, and K. Krishna Moorthy 
 

 
 

In collaboration  with Dr. Peter Rayner after 
the discussion meeting and workshop in 
Nov/Dec. 2006 on the network design using 
the output from MOZART a study was 
initiated to design a network to minimise  the 
trace of the a-posteriori covariance matrix of 
errors in sources using the genetic algorithm 
as outlined below. 
 
The focus in the first phase of this study is on 
Transcom regions  (11 land and 11 ocean 
covering the entire globe) for source/sink 
determination and seasonal inversion (also 
called cyclo-stationary inversion).  The 
forward runs for transport involved the use of 
4 background tracers (fossil fuel 90 and 95, 
net ecosystem productivity and oceanic 
uptake) and 264 pulsed tracers ( a monthly 
pulse from each region) tracked for 3 years 
following the pulse. The forward runs were 
made with MOZART, a state of the art 
transport model with T42 resolution using 
repeating 1996 NCEP winds. The monthly 
mean signals from all the runs (at each grid 
point for 36 months; nearly 10 GB of output) 
at each grid point was archived. 

In the seasonal inversion, for a given network 
of stations, signals were extracted at each of 
these stations (closest grid point) and 
reduced to a seasonal signal to be 
compatible with seasonal observations.   For 
a linear inversion set-up of GS=D, where G is 
the model matrix, S is the source/sink 
estimate to de determined and D is the data 
vector, the Bayesian approach of inversion 
minimizes the following cost function: 
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where C(S0)  and C(S) is the a-priori and a-
posteriori  estimates of source errors. The 
values of C(S0) are taken from the Transcom 
TDI protocol.  
 
The posteriori  estimate of source errors is 
given by 
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The metric we use for the “goodness” of a 
network is the trace of C(S) matrix. In the 
network design, we aim to find a network of 
stations that minimizes this quantity. Notice 
that C(S) depends only on G, C(S0) and 
C(D) and does not depend upon the D 
vector.  
 
Genetic Algorithm (GA) is used to  determine 
the optimal network of stations. The 
algorithm maintains a population of potential 
networks (200 in this case) chosen at 
random. Each network has 50 stations (also 
called parameters). For each of the stations 
in each network, a data error of 1 ppm 
(diagonal entries) of the C(D) matrix is 
assigned. The G matrix for each network is 
built from the full 3-D transport simulations of 
MOZART. The TDI inversion (the solution to 
Eq. 1) is applied to each of the networks and 
the trace of the C(S) matrix (Eq. 2) is 
computed for its fitness (or goodness). In the 
iterative step of the algorithm, members of 
the population will exchange parameter 
values pairwise (cross-over), have parameter 
values randomly changed (mutation), be 
culled according to its fitness, be cloned or 

1.11 Carbon Fluxes in India and Central 
Asia (CaFICA): Network Design 
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Figure 1.20  The 50 station optimum network is shown . 

 
otherwise reproduce to rebuild the population 
after culling. 
 
The above four steps constitute one step of 
the GA. After these, we again build the G 
matrices and perform the TDI inversion and 
repeat the iterative steps of GA. 
 
 
 

 
Notice the preponderance of stations in the 
tropics, especially, in South America and 
Africa.  These are regions of large prior 
uncertainties in sources (see below) and GA 
tries to minimise these by adding more 
stations in these regions.  The prior 
uncertainties (C(S0)) and the uncertainties of 
the optimum network are given below: 
 

REG                      LND_PR           OCEAN_OPT              LND_PR          OCEAN_PR 
1          0.495   (Bor Namer)          5.595 (NPac)    21.4        31.6  
2    0.991   (Temp Namer)       8.745 (Eq EPac) 116.4    12.2 
3               2.071   (Trop Amer)          4.548 (Eq WPac)   258.8    15.1 
4            1.880   (S Amer) 5.176 (S Pac) 114.1    71.2 
5                 1.197   (N Africa)  1.235  (N Ocn)           86.4     3.0 
6                  1.995   (S Africa) 4.214  (N Atl)  126.3     7.4 
7                    1.659   (Bor Asia) 4.548  (Eq. Atl)          86.6     7.4 
8              2.004   (Temp Asia)          2.711  (S Atl) 96.4                     10.9 
9                0.750   (Trop Asia )           4.529  (S Ocn) 52.6   108.0 
10                0.959   (Aus NZ) 7.705  (N Ind) 15.0    26.4 
11          1.326   (Eur) 6.444  (S Ind) 81.1    14.3 

 
 
In addition, the Southern Ocean which had a 
large prior uncertainty has 5 stations. Some 
regions like Europe, Australia  and Boreal 
Asia get only one station each. The total  
 

 
 
uncertainty for the prior is 1360 (GTC/yr)^2 
while the optimum network is 70 (GTC/yr)^2. 
 

P S Swathi, N K Indira, PJ Rayner and V K Gaur 
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A new flask station for collection of CO2 
samples has been established in Pondicherry 
University campus in Sep. 2006. The site 
was chosen on account of its location on east 
coast of India and its ability to sample clean 
oceanic air from the Bay of Bengal and the 
Indian Ocean.  From an initial sampling rate 
of once in 10 days, the present sample is 
collected once a week. The collection point is 
at the top of a 5 m tower on the roof of PU 
Guest House building.  The fist set of 
samples have been sent to LSCE, France for 
analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  1.21 A view of the collection site, collection 
unit and an automatic weather station set up near 
the measurement site.  

 
N K Indira, P S  Swathi, B  C  Bhatt, V Reddy, V K 

Gaur and M Ramonet 

 
One of the biggest challenges in climate 
research is to arrive at reliable future 
projections. However, while there now exists 
a firm scientific basis and procedure for 
climate forecasts, numerical climate models 
still suffer from large uncertainties. Observed 
local trends do reflect combined effect of 
both anthropogenic forcings and natural 
variability over a location; however, 
projections based on a linear trend may have 
considerable error as the trends are 
generally significantly non-linear owing to low 
frequency natural variability and the resultant 
changes (second derivatives) in the trends. 
In this work we adopt a weighted epochal 
trend ensemble (WETE) approach to assess 
the stability of the Indian desert with 
increased reliability. Ensemble techniques 
have generally helped to reduce 
uncertainties in forecasts and the weighted 
epochal trend ensemble proposed here takes 
into account the inherent non-linearity in the 
trend by considering a piece (epoch)-wise 
linear trend and its weighted contributions to 
construct more reliable future projections of 
local climate change. Both the WETE and 
Linear projections of desert area over India 
based on annual rainfall and show that the 
Thar Desert in western India is expanding in 
a north-east direction. Both the simple linear 
trend and the epochal trend ensemble 
projections indicate significant increase in the 
desert area over India over the next hundred 
years; however, there are also significant 
differences between the two projections. An 
index of aridification can be defined as the 
number of grid points (percentage of total 
area) that receives annual rainfall less than 
or equal to the annual mean rainfall over 
Thar (258 mm) desert in a persistent manner. 
Both simple linear trend and WETE 
projections show (figure 1.22) a steady 
increase in the desert coverage over India for 
the next hundred years. However, there are 
also differences between the two projections. 
Both the projections show that the 
percentage  area      covered    by       desert  

1.12 Establishment of the Flask Station in 
Pondicherry 
 

1.13 The Expanding Indian Desert: 
Assessment Through Weighted Epochal 
Trend Ensemble 
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Figure 1.22 Index of desertification in terms of 
percentage of number of grid points (left axis) and 
percentage of total area (right axis) during the 
period 2000- 2500 based on observed rainfall over 
last 53 years. The projection based on 53-year 
simple linear trend shows no significant 
desertification for the next hundred years, followed 
by rapid desertification that saturates at about 35% 
(as against the current 23%) of the total area  
around 400 years (around the year 2400). In 
contrast, the WETE projection (red line) shows 
rapid desertification that begins after about 50 
years (around the year 2050) that saturates at about 
32 % of the total area around the year 2200 

conditions is going to increase rapidly, and 
then remain steady at that level for the next 
five hundred years. However, while the 
desertification increases only after hundred 
years in the linear trend projection, the 
WETE projection shows a steep increase 
starting about fifty years from now. In view of 
our earlier assessment of the reliability of the 
two projections, we can assume that a sharp 
rise in desertification is likely to begin about 
fifty years from now, although both the 
projections predict saturation at about 30-
35% of the total area after about 300 years 
from now. The results of the validation are 
used to choose the more reliable projection, 
which shows a sharp increase in the size of 
the Indian desert in the next hundred years. 
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